Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563895

RESUMO

Defective hydration of airway surface mucosa is associated with recurrent lung infection in cystic fibrosis (CF), a disease caused by CF transmembrane conductance regulator (CFTR) gene mutations. Whether the composition and/or presence of an airway surface liquid (ASL) is sufficient to prevent infection remains unclear. The susceptibility to infection of polarized wild type and CFTR knockdown (CFTR-KD) airway epithelial cells was determined in the presence or absence of a healthy ASL or physiological saline. CFTR-KD epithelia exhibited strong ASL volume reduction, enhanced susceptibility to infection, and reduced junctional integrity. Interestingly, the presence of an apical physiological saline alleviated disruption of the airway epithelial barrier by stimulating essential junctional protein expression. Thus, rehydrated CFTR-KD cells were protected from infection despite normally intense bacterial growth. This study indicates that an epithelial integrity gatekeeper is modulated by the presence of an apical liquid volume, irrespective of the liquid's composition and of expression of a functional CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Transporte de Íons , Mucosa Respiratória/metabolismo
2.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870580

RESUMO

Strain 3P27G6T was isolated from an artesian well connected to the thermal water basin of Comano Terme, Province of Trento, Italy. In phylogenetic analyses based on multilocus sequence analysis, strain 3P27G6T clustered together with Mesorhizobium australicum WSM2073T. Genome sequencing produced a 99.51 % complete genome, with a length of 7 363 057 bp and G+C content of 63.53 mol%, containing 6897 coding sequences, 55 tRNA and three rRNA. Average nucleotide identity analysis revealed that all distances calculated between strain 3P27G6T and the other Mesorhizobium genomes were below 0.9, indicating that strain 3P27G6T represents a new species. Therefore, we propose the name Mesorhizobium comanense sp. nov. with the type strain 3P27G6T (=DSM 110654T=CECT 30067T). Strain 3P27G6T is a Gram-negative, rod-shaped, aerobic bacterium. Growth condition, antibiotic susceptibility, metabolic and fatty acid-methyl esters profiles of the strain were determined. Only few nodulation and nitrogen fixation genes were found in the genome, suggesting that this strain may not be specialized in nodulation or in nitrogen fixation.


Assuntos
Água Doce/microbiologia , Água Subterrânea , Mesorhizobium , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Água Subterrânea/microbiologia , Itália , Mesorhizobium/classificação , Mesorhizobium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Microbiology (Reading) ; 166(10): 995-1003, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749953

RESUMO

Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa.


Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Transformação Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/genética
4.
Curr Gene Ther ; 15(5): 447-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26264708

RESUMO

BACKGROUND: Polarized airway epithelial cell cultures modelling Cystic Fibrosis Transmembrane conductance Regulator (CFTR) defect are crucial for CF and biomedical research. RNA interference has proven its value to generate knockdown models for various pathologies. More recently, genome editing using CRISPR-Cas9 artificial endonuclease was a valuable addition to the toolbox of gene inactivation. METHODS: Calu-3 cells and primary HAECs were transduced with HIV-1-derived lentiviral vectors (LVV) encoding small hairpin RNA (shRNA) sequence or CRISPR-Cas9 components targeting CFTR alongside GFP. After sorting of GFP-positive cells, CFTR expression was measured by RT-qPCR and Western blot in polarized or differentiated cells. CFTR channel function was assessed in Ussing chambers. Il-8 secretion, proliferation and cell migration were also studied in transduced cells. RESULTS: shRNA interference and CRISPRCas9 strategies efficiently decreased CFTR expression in Calu-3 cells. Strong CFTR knockdown was confirmed at the functional level in CRISPR-Cas9-modified cells. CFTR-specific shRNA sequences did not reduce gene expression in primary HAECs, whereas CRISPR-Cas9-mediated gene modification activity was correlated with a reduction of transepithelial secretion and response to a CFTR inhibitor. CFTR inactivation in the CRISPR-Cas9-modified Calu-3 cells did not affect migration and proliferation but slightly increased basal interleukin-8 secretion. CONCLUSION: We generated CFTR inactivated cell lines and demonstrated that CRISPR-Cas9 vectorised in a single LVV efficiently promotes CFTR inactivation in primary HAECs. These results provide a new protocol to engineer CF primary epithelia with their isogenic controls and pave the way for manipulation of CFTR expression in these cultures.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Vetores Genéticos/genética , Lentivirus/genética , Interferência de RNA/fisiologia , Sistema Respiratório/metabolismo , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Fibrose Cística/genética , Expressão Gênica/genética , Terapia Genética/métodos , Genoma/genética , Humanos , Interleucina-8/genética , RNA Interferente Pequeno/genética
5.
Cell Mol Life Sci ; 72(15): 2793-808, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26100513

RESUMO

The different types of cells in the lung, from the conducting airway epithelium to the alveolar epithelium and the pulmonary vasculature, are interconnected by gap junctions. The specific profile of gap junction proteins, the connexins, expressed in these different cell types forms compartments of intercellular communication that can be further shaped by the release of extracellular nucleotides via pannexin1 channels. In this review, we focus on the physiology of connexins and pannexins and describe how this lung communication network modulates lung function and host defenses in conductive and respiratory airways.


Assuntos
Comunicação Celular/fisiologia , Conexinas/metabolismo , Pulmão/fisiologia , Animais , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Humanos , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiologia , Transdução de Sinais/fisiologia
6.
Am J Respir Cell Mol Biol ; 53(2): 265-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25562674

RESUMO

Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.


Assuntos
Células Epiteliais/fisiologia , Homosserina/análogos & derivados , Pseudomonas aeruginosa/fisiologia , Arildialquilfosfatase/metabolismo , Sinalização do Cálcio , Comunicação Celular , Linhagem Celular , Junções Comunicantes/fisiologia , Homosserina/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Lactonas , Infecções por Pseudomonas/microbiologia , Percepção de Quorum , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia
7.
J Immunol ; 192(10): 4804-12, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24733844

RESUMO

Chronic infection and inflammation of the airways is a hallmark of cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The response of the CF airway epithelium to the opportunistic pathogen Pseudomonas aeruginosa is characterized by altered inflammation and apoptosis. In this study, we examined innate immune recognition and epithelial responses at the level of the gap junction protein connexin43 (Cx43) in polarized human airway epithelial cells upon infection by PAO1. We report that PAO1 activates cell surface receptors to elicit an intracellular signaling cascade leading to enhancement of gap junctional communication. Expression of Cx43 involved an opposite regulation exerted by JNK and p38 MAPKs. PAO1-induced apoptosis was increased in the presence of a JNK inhibitor, but latter effect was prevented by lentiviral expression of a Cx43-specific short hairpin RNA. Moreover, we found that JNK activity was upregulated by pharmacological inhibition of CFTR in Calu-3 cells, whereas correction of a CF airway cell line (CF15 cells) by adenoviral expression of CFTR reduced the activation of this MAPK. Interestingly, CFTR inhibition in Calu-3 cells was associated with decreased Cx43 expression and reduced apoptosis. These results indicate that Cx43 expression is a component of the response of airway epithelial cells to innate immune activation by regulating the survival/apoptosis balance. Defective CFTR could alter this equilibrium with deleterious consequences on the CF epithelial response to P. aeruginosa.


Assuntos
Comunicação Celular/imunologia , Células Epiteliais/imunologia , Junções Comunicantes/imunologia , MAP Quinase Quinase 4/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Apoptose/genética , Apoptose/imunologia , Comunicação Celular/genética , Linhagem Celular , Conexina 43/genética , Conexina 43/imunologia , Fibrose Cística/genética , Fibrose Cística/imunologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Células Epiteliais/patologia , Junções Comunicantes/genética , Junções Comunicantes/patologia , Humanos , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/genética , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
8.
FEBS Lett ; 588(8): 1288-96, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24631537

RESUMO

The mucosal lining forms the physical and chemical barrier that protects against pathogens and hostile particles and harbors its own population of bacteria, fungi and archea, known as the microbiota. The immune system controls tolerance of this population of microorganisms that have proven to be beneficial for its host. Keeping its physical integrity and a correct balance with the microbiota, the mucosa preserves its homeostasis and its protective function and maintains host's health. However, in some conditions, pathogens may succeed in breaching mucosal homeostasis and successfully infecting the host. In this review we will discuss the role the mucosa plays in the defense against bacterial pathogens by considering the gap junction protein connexins. We will detail their implication in mucosal homeostasis and upon infection with bacteria in the respiratory and the gastrointestinal tracts.


Assuntos
Conexinas/imunologia , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Respiratória/imunologia , Animais , Conexinas/genética , Conexinas/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Mucosa Respiratória/microbiologia
9.
Expert Opin Ther Targets ; 15(8): 989-1002, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21585238

RESUMO

INTRODUCTION: The lung is a mechanically active system exposed to the external environment and is particularly sensitive to injury and inflammation. Studies have identified intercellular communication pathways that promote proper lung function in response to injury and disease. These pathways involve connexins (Cxs) and gap junctional intercellular communication (GJIC). AREAS COVERED IN THIS REVIEW: The functional expression of Cxs in airway epithelium and vasculature, under normal and pathological conditions, is reviewed. Inhibition of GJIC and/or silencing of Cxs have been shown to modulate the course of disease development. Cx-based channels: i) coordinate ciliary beating and fluid transport to promote clearance of particulates, ii) regulate secretion of pulmonary surfactant, in response to deep inhalation by interconnecting type I and type II alveolar epithelial cells, and iii) are key mediators of pro- and anti-inflammatory signalling by the pulmonary endothelium, in order to modulate leukocyte recruitment from the circulation. EXPERT OPINION: Cx-based channels play several central roles in promoting a regulated inflammatory response and facilitating lung repair, thus enabling the pulmonary epithelium and vasculature to behave as integrated systems. Several pathologies can disrupt the normal communication pathways required for proper lung function, including acute lung injury, asthma, cystic fibrosis, pulmonary fibrosis and cancer.


Assuntos
Conexinas/efeitos dos fármacos , Pneumopatias/tratamento farmacológico , Humanos , Pneumopatias/metabolismo
10.
Am J Respir Cell Mol Biol ; 44(1): 74-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20167933

RESUMO

Stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by protease-activated receptors (PARs) at the basolateral membranes and by adenosine receptors (ADO-Rs) at the apical membrane maintain airway surface liquid (ASL) volume, which is required to ensure hydrated and clearable mucus. Both pathways involve the release of prostaglandin E2 (PGE2) and the stimulation of their basolateral receptors (EP-Rs). We sought to determine whether gap junctions contribute to the coordination of these pathways for modulating CFTR activity and mucus hydration. We used RT-PCR and Western blotting to determine connexin (Cx), CD73, and EP-R expression in a Calu-3 airway epithelial cell line grown on Transwell (Corning Costar, Cambridge, MA) inserts. We used dye coupling to evaluate gap junctional intercellular communication (GJIC). We used Ussing chamber studies and X-Z confocal microscopy to monitor Cl(-) secretion and ASL volume regulation. We found that connexin 43 (Cx43)-mediated GJIC was increased either by endogenous ADO after the hydrolysis of purine nucleotides by CD73 or by the direct activation of ADO-Rs. Inhibition of phospholipase A2 and cyclooxygenase prevented ADO-dependent increases in GJIC, suggesting the involvement of PGE2. PGE2 was found to increase GJIC markedly by stimulating EP4-Rs. The modulation of ADO signaling also affected the PAR-dependent activation of CFTR. The reduction of GJIC by CD73 or Cx43 inhibition prevented PAR-evoked CFTR currents in Ussing chambers. The inhibition of GJIC resulted in a failure of PGE2 to increase ASL volume in Calu-3 cells and in primary cultures of well-differentiated human airway epithelial cells. Thus, gap junctions coordinate a signaling network comprising CFTR, ADO-Rs, PARs, and EP-Rs, and are required for ASL volume homeostasis.


Assuntos
Comunicação Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Junções Comunicantes/metabolismo , Depuração Mucociliar , Muco/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Western Blotting , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Polaridade Celular , Cloretos/metabolismo , Conexinas/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Junções Comunicantes/efeitos dos fármacos , Homeostase , Humanos , Potenciais da Membrana , Microscopia Confocal , Depuração Mucociliar/efeitos dos fármacos , Inibidores de Fosfolipase A2 , Fosfolipases A2/metabolismo , Interferência de RNA , Receptores de Prostaglandina E/metabolismo , Receptores Purinérgicos P1/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...